zkCNN

2023.8

zkCNN: Zero Knowledge Proofs for Convolutional Neural
Network Predictions and Accuracy

Tianyi Liu Xiang Xie Yupeng Zhang
Texas A&M University and Shanghai Shanghai Key Laboratory of Texas A&M University
Key Laboratory of Privacy-Preserving Privacy-Preserving Computation zhangyp@tamu.edu
Computation xiexiang@matrixelements.com

tianyi@tamu.edu

Outline

e Sumcheck for FFT
* 2-D conw. using FFT
* Preliminary about FFT

* Achieve linear prover

* Generate sumcheck messages in linear time (with initialization)

* [This| Initialize F(u, x) for all x € {0,1}1°8 N in linear time (u € F°8M js fixed)
* Achieve logarithmic verifier

* [This] Delegate the the computation for F(u,v) to prover

e Generalization of GKR for CNN

* Generalized addition and multiplication gates with fan-in = 2
* Taking inputs from either the layer above or from the input gate.

* Reduce the number of IFTTs in the entire convolutional layer

2-D Convolution using FFT

2-D Conv = 1-D Conv

result of a 2-D convolution between two matrices X and W of size
nXxnandwXwasa(n—-w+1)X(n—w+ 1) matrixU =X« W
such that

w—1,w-1
Ujk = Z Xirthesl - Wyp | 2-D conv (1)

t=0,1=0

for j,k = 0,...,n — w. 2 In convolutional neural networks, the

tion 2.1, let X, W € F"™ be

Xin+l = Xn-1-tn-1-1» 0<t<mn0<l<n

W _ Wt,l’ O S t,l <w
tn+l — .
0, otherwise

_ i -
U'=Z Xj—iWj | 1-D conv

(w-1),(w-1)
Ujk = Z 50,10 Xjrt et Wi

(w-1),(w-1) .

= Z sl X(n-1-j-1) -n+(n-1-k-1) Wr-n+1
(n-1),(n-1) o 2

=Dt X msiuorok-pWemer 0D

n’-1-j-n—k _ -
= Zl=0 an—l—j-n—k—ivvi

n?-1-j-n—k

Thus U can be computed through 1-D convolution between X, W,
vectors defined by the input and the kernel of a convolutional layer.

2-D Convolution using FFT

1-D Conv => poly multiplication (3 steps using FFT)

variate polynomials with coefficients X, W as X(n), W(n), then
U(n) = X(nW(n) & Uj = ¥I_, Xj_iW; by taking U as the first
n? coefficients of U(7).

Polynomial Multiplication

Theorem. Can multiply two degree n-1 polynomials in O(n log n) steps.

i
U = X * W = IFFT(FFT(X) © FFT(W)) (12) ae":“"a el
B> by s By o
1. FFT: 2n? points on polyX and polyW I R
2. element-wise product: 2n? points on polyU
(point-value rep. ot polyU) AG)s s AKonr) poin-value multplicaion

> C(Xo)y C(xl Jhocor C(x2n-1)

B(xp), ..., B(x,1) o(n)
3. IFFT: coeff. rep. of polyU S
(U = first n? coeff. of polyU)
O(n log n) i
Ot ST i (@°, ¥9)s «e0r (@™, y,)
coefficient O(n log n) point-value
representation representation

https://www.cs.princeton.edu/courses/archive/spr05/cos423/lectures/05fft.pdf

FFT & IFFT

FFT
_ Y)
N

Y2
Y3

_y n-1J

T

Discrete Fourier transform

1
P S O S —

|1

1 1 1
o o w’
o o w®
o’ 6 o’

w

. €

nl 20D (D)

!

Fourier matrix F,

Sumcheck for FFT

O(n log n)

>
>

ao, al,..., al’l-l

(wo’ yo)’ QOO (wn_la yn—l)

coefficient
representation

A

O(n log n)

Divide-and-conqure

point-value
representation

1 a,
wn—l a,
wZ(n-l) a,
w3(n—l) a;
w(n—l)(n—l) -an_l |

Key idea: choose x, = wk where wis principal nth root of unity.

Def. An n* root of unity is a complex number x such that x" = 1.

Fact. The nth roots of unity are: w0, !, ..., o"! where w = e 2vi/n,

Pf. (k)" = (e 2xik/n)n = (emi)2k = (-1)2k = 1,

T

Inverse DFT

1
[S S

[a, [1 1 1 1 1
a 1 o w’ o’ ... o™}
a, 1 o o @ e 2D
a| |1 o o o - 3D
a, 1 o™ 2D 3D DD

T

Fourier matrix inverse (F,)!

0D 2D 3D

1 1 o 1
o T oD
e i 2D
e o 030D

==

IFFT

o
N
3)
V3

yn—l

Consequence. To compute inverse FFT, apply same algorithm but use
o = e -2vi/n as principal n*" root of unity (and divide by n).

Sumcheck for FFT

Notations

tions at powers of the root of unity. Formally speaking, let ¢

(co, €1, ..., cN—1) be the vector of coefficients of a polynomial, a =
(ao, a1, . . .,ap—1) be the vector of evaluations at (wo, ! a)M_l),

By the definition of polynomial evaluations,

9 e oy

_vN-1._ji
aj =iz Ciw’

for

j=0,1,...,M — 1, which can also be written as a matrix-vector
multiplication a = F - ¢, where F is the standard Fourier matrix:

(1 1 1 1)
1 6()1 wz C()N_l
po| 1 w2 ol 2(N-1)
\ L M-l 2M-) (M-1)(N-1))
a=F-c

(4)

Multilinear Extension

a(y) = D coayorn EOF), (5)

for y € {0, 1}°6M|Here d(-) and &(-) are multilinear extensions of a

and c, and F(-, -) is the multilinear extension defined by the Fourier
matrix F such that F(y, x) is the (y,x)-th entry in F. As x,y are

Definition 2.2 (Identity function). Let B : {0,1}*x{0,1}f — {0,1}
be the identity function such that f(x,y) = 1if x = y, and B(x,y) =
0 otherwise. Suppose f is the multilinear extension of . Then
can be expressed as: ﬁ(x, y) =]'[le((l - x;)(1 - y;) + xiy;).

Definition 2.3 (Multilinear Extension [21]). Let V : {0,1}¥ — Fbe
a function. The multilinear extension of V is the unique polynomial
V : F¥ > F such that V(xl,xz, v Xp) = V(x1,x2,...,x¢) for all
X1, X2,...,xp € {0,1}. V can be expressed as:

V(x1, %2, ... X¢) = Zbe{m}f ,B~(x, b) - V(b)

¢
= Y etonye | L (=50 = b)) +x:5) - V(b),
where b; is i-th bit of b.

Sumcheck for FFT

Apply sumcheck to (logN)-variate poly g(x) = ¢(x)F(u, x)

Claim: d(u) = er{o’l}logN E(x)F(u,x) for a random fixed point u € [Flog M

Description of Sum-Check Protocol.

« At the start of the protocol, the prover sends a value C; claimed to equal the value H defined in
Equation (4.1).

« In the first round, P sends the univariate polynomial g; (X;) claimed to equal
Z 8(X1,x2,...,xy).
(02,) {0, 1}

V checks that
Ci=g1(0)+g1(1),

and that g1 is a univariate polynomial of degree at most deg, (g), rejecting if not. Here, deg;(g)
denotes the degree of g(Xi,...,X,) in variable X.

¢ V chooses a random element r; € F, and sends r; to P.

* In the jth round, for 1 < j < v, P sends to V a univariate polynomial g;(X;) claimed to equal

g(rl7"'$rj—lﬂxj7xj+l7'“7xv)'
(1) €{0, 117

V checks that g; is a univariate polynomial of degree at most deg;(g), and that g;_1(rj-1) =
2(0)+g;(1), rejecting if not.

* V chooses a random element ; € ¥, and sends r; to P.

 In Round v, P sends to V a univariate polynomial g, (X,) claimed to equal
8(r1y o srv—1,%)-

V checks that g, is a univariate polynomial of degree at most deg, (g), rejecting if not, and also
checks that g,—1 (1) = £(0) +g,(1).

¢ V chooses a random element r, € IF and evaluates g(ry,...,r,) with a single oracle query to g.
V checks that g, (r,) = g(r1,...,ry), rejecting if not.

« If V has not yet rejected,) halts and accepts.

In round k:
* Prover sends the degree-2 univariate polynomial g (X), which
can be specifiied by 3 points g5 (0), gx (1), gk (2)

96) = Trcion ~ Ertogmeton) E0 oo Temts X Xt s Xiog)
F(u,ry, o Te—1, X, X415 oo Xlog N)

* Prover is required to evaluate ¢ and F at all points of the form
&(ry, w11, £0,1,23, X441, ...,xlogN)

ﬁ'(u, My ey Tk—1 {0;1;2}1 XKk+1r =) xlog N)

where (xk+1,) xlogN) € {0,1}l08 Nk
In the last round:

e Verifier is required to evaluate random points F (u, v), ¢(v)

Sumcheck for FFT

Generate sumcheck messages
Goal: evaluate points 6(r1, ey T—1,10,1,2}, Xpe 41, oo xlogN), F‘(u, T e Te—1,10,1,2}, Xjo 41, ---rxlogN) fork =1,..,logN

1. Initialize the values of é(x), F(u,x) on all x € {0,1}10gN (u € F198 M js fixed)
« Naive approach requires O(MN) to compute F (u, x)
e This work computes F(u, x) in O(M + N)

2. Generate all sumcheck messages in O(N)

Outline:

e With initializations, how to generate all sumcheck messages in O(N) ? / The naive approach to compute F(u, x) in O(MN
* How to initialize F(u, x) in O(M + N) ?

Sumcheck for FFT

Generate sumcheck messages in 0(2%) with 0(2£)—order initialization

Goal:
For simplicity, we denote the £-degree multilinear poly. over F¢ by h(x).

1. Initialize: All evaluations of h(x) for x € {0,1}* can be computed in 0(2{))
2. Compute {(Tll ey rk—li {0)1;2}; bk-l—ll) bf)}k=1,...,f,‘bk+1,...,ng{0,1} # =3 23 pOiﬂtS

Lemma: Fach point can be evaluated in O (2{)).
Method 1: compute each point one by one with total runtime 0(22%).

Method 2: reduce time to 0(2%) per round with total runtime 0 (£2%) over £ rounds.

Key Fact:
The points evaluated in round k is highly structured that the tailing coordinates are all Boolean.

For any input z of the form (ry, ..., 7—1,10,1,2}, bx 11, --., bp):

£
h(z) = Z ‘ ‘ ((1—z)(1 —x;) + zx;) - h(x) Consider all evaluations of h(x) for x € {0,1} as a
xefo,1}t L Li=0 list h of size 2°.

= 0 for all (Xy41,) Xp) F (b1, -, bp) It enables P to evaluate h(2) in round k at all points
with a single pass over h.

Sumcheck for FFT

Generate sumcheck messages in 0(2%) with 0(2£)—order initialization

Method 2: reduce time to 0 (2%) per round with total runtime 0 (£2%) over £ rounds.

Key Fact:
The points evaluated in round k are highly structured where the tailing coordinates are all Boolean.

For any input Z of the form (1y, ..., 7%—1,10,1,2}, bx 41, ---, bp):
£
A=) | =0 -x+zx) - he
x€{0,1}¢ i=0
— 0 fOI‘ all (xk+1, ...,Xg) i (bk+1, neny b{)

* Consider all evaluations of h(x) for x € {0,1}¢ as a table h of size 2°.
* FEach entry of h contributes to h(ry, ..., 7 _1,10,1,2}, bx 41, --., bp) for only one tuple (by 1, .., bp).
* It enables P to evaluate h(z) in round k at all points with a single pass over h.

Method 3: have prover reuse work across rounds reducing time to 0(2¢/2¥) in round k with 0(2%) total runtime.
Informal Fact:
Two entries i, j agree in their last s bits, then h;, h; contribute to the same three points in each of the final s rounds.

Sumcheck for FFT

Generate sumcheck messages in 0(2%) with 0(26)—order initialization

Method 3: have prover reuse work across rounds reducing time to 0(2¢/2¥) in round k with 0(2%) total runtime.

Informal Fact:
Two indices i, j agree in their last s bits, then h;, h; contribute to the same three points in each of the final s rounds.

p,-(0,0,0) Di (01011) pi(o'l'o) Di (0,1,1) ‘ pi(l,0,0) pi(l'o'l) pi(lrllo) pi(l'l'l)

e

(1-r)-pi(000) | (1—7)-p(001)+ | (1-1r)-p;(0,1,0) (1-r)-p;i(0,1,1)
+r1 : pl. (1'0’0) rl ® pl(lﬁoll) + r1 ” pl (11110) + rl = p; (11151)
=Di (rl' O'O) =Pi (7'1, 0'1) =Di (T1,1,0) = pi(rlllrl)

(1 =13) - pi(11,0,0) + 15 - p;(11,1,0) (1-=r3) - pi(r,0,1) + 1 - p;(ry, 1,1)
== pi(rp 2, 0) = pi(rl' T2, 1)

Proof:

Sumcheck for FFT

Generate sumcheck messages in 0(2%) with 0(2£)—order initialization

Method 3: have prover reuse work across rounds reducing time to 0(2¢/2¥) in round k with 0(2%) total runtime.

Informal Fact:

Two indices i, j agree in their last s bits, then h;, h; contribute to the same three points in each of the final s rounds.

Lemma 4.3. Suppose that p is an {-variate multilinear polynomial over field F and that A is an array of
length 2° such that for each x € {0,1}¢, A[x] = p(x)?‘ Then for any r| € I, there is an algorithm running in
time O(2°) that, given r and A as input, computes an array B of length 2° =1 such that for each x' € {0, 1}£—1,

B[x'] = p(r1,x).

p(x1,x2,...,x0) = x1

Proof:

p(L,x2,...,x0) + (1 —x1) - p(0,x2,...,xp).
B[Y] < r1-A[L,X] + (1 —r1)-A[0,X].

Lemma 4.4. Let h be any {-variate multilinear polynomial over field F for which all evaluations of h(x) for
x € {0,1}* can be computed in time O(2°). Let ry,...,r; € F be any sequence of ¢ field elements. Then there
is an algorithm that runs in time 0(22) and computes the following quantities:

{h(rla e 3ri—1>{0) 1a2}abi+17- o)bf)}izl 4;biq

.....

bec{0,1} (4.14)

given:

Si = {h(rla ERX ri—labbbi—i-la <o 9b€)}bi,...,bg€{0,l}‘

h(rl,...,r,-_l,Z,b,-+1,...,bg) =2-h(r1,...,r,-_l,l,b,-+1,...,bg)—h(rl,...,ri_l,O,bi+1,...,bg),

Si+1 can be computed in time O(2¢).

Sumcheck for FFT

Back to our goal:

Goal: evaluate points E(rl, vy Te—1,10,1,2}, X1, oovs Xlog N), F'(u, T ey Te—1,10,1,2}, X1y ooes xlogN) fork=1,..,logN

1. Initialize the values of é(x), F(u, x) onall x € {0,1}1°8N (y € F1°8M i fixed)
. |Naive approach requires O(MN) to compute F (u, x) |
'This work computes F (u, x) in O(M + N)
2. | Generate all sumcheck messages in O(N)

Algorithm 1 Sumcheck(é, A¢, F, Afp, r1, ..., TogN)

Input: Arrays A. and Ap storing é(x) and F(u, x) on all
logN . e e g =~
* € {01}, randomry, ..., Mlog N . Next task: Initialize F(u, x) forall x € {0,1}1'0
Output: log N sumcheck messages for . . (0,1}logM ¢(x)F(u,x).
Each message consists of 3 elements;
1: fori=1,...,logN do

2 for b € {0, l}f_i do // B is the number represented by b.

3: fort=0,1,2do

4: ¢(ri,...,ri—1,t,b) = Ac[B]-(1— t)+Ac[B+2[_i] -t

5 F(ri,...,ri-1,t,b) = Ap[B]-(1-t)+Ap[B+2¢71]-t

6 fort € {0,1,2} do // Aggregate messages in round i.

7 Send Zbe{o,l}"i ¢(ri,...,ri—1,t,b) -1:"(r1, ..o, Ti—1, 1, b)
for b € {0,1}* " do // Update the arrays.

: Ac[B] = A¢[B]- (1 —ri) +Ac[B+2F7] - i
10: Ap[B]l = Afp[B] - (1-r;) +Ap[B+217"] - 1y

Sumcheck for FFT

Initialize F(u, x) for all x € {0,1}!°8V .

F(u,x) = Zze{O,l}bgM ,B(u, 2)F(z, x)

- Zze{O,l}logM ﬁ(u, z)w/\’z

= Z 'B(u Z)wX(ZO'ZlogM_l"‘ZI 'zlogM—2+"'+zlogM—1)
z€{0,1}logM ’ ’

log M—1
ZZE{O 1}logM 1—[% ((1 _ui)(l —Zi)+u,-z,-)

log M—-1 -
X ZOE glog M-1 _}Zj

log M—1
- Zze{o 1}logM 1—[- ((1—u)(1 - zi) +uizi)

7
'wzio_gOM lzlogM 1_]-((\'-2_,') ()

log M—1
- 226{0,1}1081\4 l—li=0 ((1 - ui)(l - Zi) +u,-z,-)
TN @)X,

j=0

binary strings, we further denote the values represented by y, x as
Y,X € F, and thus F(y,x) = wYX The equation basically replaces

log M—1-j M ; ; ;
Note that 02"’ = »2*T above is the 2/+1-th root of unity. We

use the same notation as in [19] to denote it as w,;+1. Then the

log M—1 log M—1

- Zze{o 1}log M l_[(1= u)(1 = zi) +uiz;) - l_[a)2]+1

_ log M—1 b
=D ecoayoen | limg (-1 =2) +uiz) - 03,7

_ log M—1 X zi
=| 1o Depony (- -2) +uiz) - 0y

log M-1
=157 (a-w) +ui- o). ®)

Let Sy, denote (1 —u)(1—z) +uizi) o

logM=2; z =00, 01, 10, 11; u=ulu_1

(1) = SuonSu]_ZO + SuOZOSu121 + SqulsU,lZO + Suozlsulzl

(2) - (Squo + Squ1)(Su120 + Su1Z1)

Sumcheck for FFT

Initialize F(u, x) for all x € {0,1}!°8V .

: M
o _ 2 : o - Note that ©?**" "™ = w2*T above is the 2/*1-th root of unity. We
F(u’ x) - ze{0,1 }logM ﬁ(u’ Z)F(Z’ X) use the same notation as in [19] to denote it as w,j+1. Then the
_ log M—1 1 —u . X wai+1 is the 27*1-th root of unity, and wg\;l only has 2/*! distinct
- i=0 (ul) + Uj w2i+1 . values for all X € [N], which is exactly the property used in the
standard FFT algorithm. Therefore, instead of computing F(u, x)

Key Idea: have prover reuse work across rounds reducing time to O (M /2%) in round logM — i.

Compute in log M rounds with total runtime O(M + N):
1. Prover precomputes all M distinct values of a)éiﬂ for0 <i<logM—1,0 <j<min(2"*1,N)in O(M)

2. Prover in round i calculates 211 different values of ((1 — u;) + u; - a)é i+1) and multiplies them to 2! distinct

running products in round { — 1.

3. In the last round, prover outputs N values of F(u,x) forallx € {0,1}1°8 N o)

Sumcheck for FFT

Initialize F(u, x) for all x € {0,1}!°8V .

F(u,x) = Zze{o,1}1°gM B(u, 2)F(z, x)
1 _
= l_[el ((1 —uj) +u; -w;‘;l) :

i=0

log M~1-j M_ ; ; ;
Note that w2 ™"’ = w2*T above is the 2/*1-th root of unity. We

use the same notation as in [19] to denote it as wyj+1. Then the

wai+1 is the 27*1-th root of unity, and w;};l only has 2/*! distinct
values for all X € [N], which is exactly the property used in the

standard FFT algorithm. Therefore, instead of computing F(u, x)

Algorithm 2 A « Initialize(w, u, N)

Input: M-th root of unity w, random point u € FI°6M and the
degree N;

Output: Af storing F(u, x) for all x € {0, 1}1°8 N,

: Ap[0] = 1;

. fori=0,...[logN—1do logM —1

for j =[2"1 —1,]..,0do min(Zl+1,N) —1

// In round i, (w,is1)* has 27! possible values VX € [N, indexed by

j=&X mod 2",
5. return Apr;

Pi (0'0'0) Di (0'0'1) pl(0,1,0) pi (0'1'1) p,(1,0,0) p,(1,0,1) pL(l,l,O) pl(l,l,l)

e~

Ar[j]l = Af[j mod 2']-((1—u;) +u; - wém)reverse ordet

(1-7)-pi(0,00) | (1—7)-pi(0,01)+ | (1-7)-p;(0,1,0) (1 -7)-pi(0,1,1)
+r1 - p; (1,0,0) - pi(1,0,1) +1; - p;(1,1,0) +n-p;(1,1,1)
= pi(rlr 0'0) =Di (r1,0,1) = pi(rlolro) = pi(rlllll)

1= rZ) ! pi(rp 010) 12 Di (rll 1,0) a1- TZ) ! pi(rp 011) 12 pi(rll 1'1)
= pi(TIITZ' 0) = pi(rli T2, 1)

Sumcheck for FFT
Apply sumcheck to (logN)-variate poly g(x) = ¢(x)F(u, x)

Claim: d(u) = er{o’l}logN E(x)F(u,x) for a random fixed point u € [Flog M

In round k:
* Prover sends the degree-2 univariate polynomial g (X), which Summary:
can be specifiied by 3 points g (0), gx (1), gx(2) * Prover time: O(M + N)
_ ~ . * Proof size: O(log N)
‘ng - Zxkﬂe{;('l} leog Nefo,1} C(rl' s Tie=10 X Xie 1, -5 Xlog N) * Verifier time: O (log N)
(U, Ty ooy Thm 15 Xy Xpg 15 ooe) Xlog N) given oracle access of 5()ﬁ'()

Prover is required to evaluate € and F at all points of the form

. on the verifier time. In particular, the oracle accesses of ¢(-) and
C(rlr e Te—1) {0,1,2}, Xk+1r - Xlog N) a(-) are usually provided by the prover or computed on verifier’s
_ input as in existing approaches mentioned above, but our proto-

F(u, 1 w0 Te=1, 10, 1,2}, X1, e Xiog N)

col requires an additional evaluation of F(-) at a random point. It
takes linear time if the verifier evaluates it on her own using a
similar algorithm as the prover in Algorithm 2. We further show

where (xk+1; «vos Xlog N) € {0,1}lo8 N~k

In the last round:

. . L Question: does it require to commit to F(u,") rather than F(-):
* Verifier is required to evaluate random points F (u, v), €(v)

Sumcheck for FFT

Delegate the computation for F (u, 1) to prover

Key idea: follow alg? through a sequence of sumcheck protocols.

Arp, the bookkeeping table, in Algorithm 2. Recall that Af stores
F(u, x) Vx € {0, 1}1"g N thus F(u,v) is the multilinear extension of
Ar evaluated at v. Moreover, in Algorithm 2, the values in Af in

Al(,i) () : {0,1}**1 — F to denote the array Ar in the i-th round for
i=0,...,JogN—1,and Al(,:i) () : Fi+1 — F to denote its multilinear

extension. Then F(u,0) = AI(:log il (v), and we can write Al(f) ()
as an equation of Al(ci—l) (+):

AP (x,0) = AUV () (1 - w) +ui - 011 (x,5)), (9)

Algorithm 2 A « Initialize(w, u, N)

Input: M-th root of unity , random point u € FI°6M and the
degree N;

Output: Af storing F(u, x) for all x € {0, 1}1°8 N,

: Ap[0] = 1;

2. fori=0,...,logN-1do

for j=2"1-1,...,0do

" Ar[j] = Ap[j mod Zi]-((l—ui)+ui-wj)

2i+1

—

w

// In round i, (wzm)x has 271 possible values VX € [N, indexed by
j=X mod 2%,
5. return Ar;

for all x € {0,1}},b € {0,1}, where wj;1(x,b) = @’ forj =

2i+1
Do Xk 2k+1 4 b, the number in F represented by (x, b) in binary.

MLE:

AP by = Y B2l (@) ((1-w)+us-dis (2,b)), (10)
ze{0,1}

for all x € F%, b € F, as both sides agree on the Boolean hypercube

Sumcheck for FFT

Delegate the computation for F (u, 1) to prover

Key idea: follow alg? through a sequence of sumcheck protocols.

Algorithm 2 Afp « Initialize(w,u, N)

Input: M-th root of unity w, random point u € F°6M and the
degree N;
Output: Af storing F(u, x) for all x € {0, 1Hog N
1 Ap[0] =1;
2: fori=0,..., logN —1do
3 for j=2"1-1,...,0do
s Arl] =Arlj mod 21 ((1 - u) +ui - o))
// In round i, (w,is1)X has 27+ possible values VX € [N], indexed by
j=X mod 27,

5. return Afr;
MLE:
AP = Y, feaA@)((-w) b (D), (10)
ze{0,1}¢

for all x € F%, b € F, as both sides agree on the Boolean hypercube

Recursive protocol

e Start: claim F(u,v) =
e Fori=logN—-1,..,0

. . (i
* Reduce its correctness to the evaluation of A;)C)

AgOg N-1) (U)

at a random point through a sumcheck protocol.
* At the end of each sumcheck, verifier has to

evaluate £(+) and ((1 — u;) + w;@;,.1(*) ata
random point.

* In the last round: Ago)(-) =1

Round i:

e Prover time: 0(2%) using alg1
* Proof size: 0(i)
* Verifier time: O (l)

+ O = .costs 0(1)

* a)l+1(r) - ZXE{OI}H’I ﬁ(r x)w21+1 for] = Zl+1 Xk zk 0(l)

Sumcheck for FFT

Delegate the computation for F (u, 1) to prover

Key idea: follow alg? through a sequence of sumcheck protocols.

Recursive protocol

 Start: claim F(u, v) = A(logN 1)()

* Fori=IlogN —1,.. O

.) ~(i
* Reduce its correctness to the evaluation of A;)(-)
at a random point through a sumcheck protocol.

* At the end of each sumcheck, verifier has to
evaluate f(+) and ((1 — u;) + u;@;41(+) ata
random point.

* In the last round: Avgo)(-) =1

F(u,x) = Zze{o 1 }log M ﬂ~(u, 2)F(z, x)
1
—l_logM 1(1—ui)+ui-w§+l).

Wiy (r) = er{o 1}i+1 ,B(r x)wzm for j = Z”l xkzk

_ ’+1 (U =rg) + rszm)

Round i:

* Prover time: 0(2%) using alg1
* Proof size: 0(i)

* Verifier time: O (l)

. ()= .costs 0(1)

* a)l+1(r) - ZXE{O 1}”'1 ﬁ(r x)w21+1 for] = ZH-I x 2k 0(l)

Summary: (log N) rounds

* Prover time: O(N) = 0(210gN 24

* Proof size: 0(log? N) = 0(210gN i)

e Verifier ime: O(log? N) = O(ZlogN i)

Generalization of GKR for CNN

Generalized addition and multiplication gates

Original GKR:

* Designed for a layered arithmetic circuit of size S, depth
d and fan-in two.

Wiz)= Y addi(z,b,c) (Wis1(b) + Wis1(c)) +multi(z,b,c) (Wis1 (b) - Wis1 (c))
b,ce{0,1}ki+1

Wo(0) =36, Wo(1)=6
w;(0,0) =9, W,(0,1)=4, W;(1,0) =6,W;(1,1) =1

WZ (010) = 3I WZ (0'1)=21 WZ (1'0) = 3! WZ (1I1) =1

Figure 4.12: Example circuit C and input x, and resulting functions W; for each layer i of C. Note that C has two output
gates.

Issue:

It takes logn layers to sum n values.

* [Thalerl3] partially address it by observing the addition
tree can be represented as a single sumcheck.

* [This] consider the a more general case.

Generalized GKR: with fan-in > 2

X(;ddl (Z, x) — {1, if Vvi+1 (x) is added to ‘G(z)
0, otherwise

Xmult;(z,x,y) = {1’ if Vit (?C) - Vi+1(y) is added to V;(z)
0, otherwise

for all x,y € {0,1}°* and z € {0,1}%. With the new definitions,

we can write the multilinear extensions of layer i as:

‘Z(Z) - ZJcG{O,l}Si+1 Xa~ddi (z,x) - {/i+1 (x)
¥ Zx,yE{O,l}si+1 Xmult;(z,%,y) - Vis1(x) - Vier (y)
= Zx,yE{O,l}SiH (B(y; 6) . X(;ddi(z, x) . f/l'+1 (x)

+ er;ult(z, x,Y) I7i+1(x) : f’i+1(y))

(13)

Generalization of GKR for CNN

Taking inputs from arbitrary layers

Motivation:

CNN consists of multiple conv. layers and fully-connected
layers but the kernels and weight-matrices of these layers
are witness from the prover.

through proof compositions of zero knowledge proofs. Our scheme
in this paper only protects the privacy of the parameters while
ensuring the integrity of predictions, which is the first step for zero |
knowledge CNN and the extensions are left as future work.

[Zhang?0] proposed a variant GKR protocol where a gate
can take input from arbitrary layers instead of only the

previous layer.

Notations:

Following the ideas in [51], we denote the subset of values in
the input layer connecting to the i-th layer as V; ;, of size S; i, and
Siin = [logS;in1, and its multilinear extension as "}i,in(')- We also
separately define the generalized addition gates between the i-th
and the (i + 1)-th, the i-th and the input layer as Xc;ddi,i+1 (z,x),
X 5ddl-,in(z, x). Similarly, we define the generalized multiplication

Generalized GKR:
A gate takes input from either the layer

above or from the input gate.

X w Bit-decomposition

| I I O

| |
| Convolution |
|

| Convolution |

o p—
!

| Fully connected l—

¢

Vi(z) = er{o,l}s,-+1 Xadd; i1(z,x) - Vig1 (x)
+) e ronyoun X0d1in(z.2) - Vijn (3)
+ Zx,yE{O,l}siH X";ulti,i+1,i+1 (z,x,y) - Vist (x)‘~/i+1(y)
* Zx,ye{o,l}si,in Xmult;jnin(z %,1) - Viin(x) Viin(y)

+ er{0,1}5i+1, Xmult; j1in (2 %,Y) - Vi1 () Viin ().
ye {0,1 }Si,in

Generalization of GKR for CNN

Taking inputs from arbitrary layers

Generalized GKR:
A gate takes input from either the layer

above or from the input gate.

X w Bit-decomposition

[1 L T 1T 1]

! !
| Convolution ‘
<
!

Vi(2) = zxe{O,l}siH Xadd; j11(z, %) - Vi1 (x)
+ ZXE{O,l}Si,in X‘;ddi,in(z, x) - f/i,in(x)
* Zx,ye{O,l}Sm X":‘ulti,i“,i“ (z.x,y) - ‘7i+1 (x)‘7i+1 (y)
+ Zx,ye{o,l}si,in Xmult;inin(2,%,9) * Viin (%) Vi in(y)

+ er{O,l}si“, Xmult; j1in (2 %,Y) - Vi1 () Viin ().
ye {0’1 }si,in

Recursive protocol
* Start: claim 170 (2)
e Fori=90,..,d
At the end of each sumcheck protocol:
* Goal: Reduce its correctness to evaluation of V;,1(+) at
a random point.
 But it is reduced to two evaluations of V;,1(+) and two
evaluations of Vi,in(')
* In the last round (reaching the input layer): verifier has
recetved two evaluations about the input per layer.

Solution:

1. Combine all evaluations to a single evaluation of the input
Vin (4 through a random linear combination. [Zhang20)]

2. Run the sumcheck protocol, verifier reducing it to a single
evaluation of V;,,(+) .

Generalization of GKR for CNN

Taking inputs from arbitrary layers

Generalized GKR:
A gate takes input from either the layer

above or from the input gate.

X w Bit-decomposition

[1 L T 1T 1]

! !
| Convolution ‘
<
!

l Convolution |

e |

'
| Fully connected l—

'

Vi(z) = Zx€{0,1}5i+1 Xadd;i+1(2 %) - Vier (%)
+ ZXE{O,l}Si,in X‘;ddi,in(z, x) - f/i,in(x)
* Zx,ye{o,l}sx'n X";ulti,i“,i“ (z.x,y) - Vis1 (x)‘~’i+1 (y)
D vetoyoin XMltiinin (2 %.9) - Vin(9) Viin(0)

+ er{O,l}si“, Xmult; j1in (2 %,Y) - Vi1 () Viin ().
ye {0’1 }si,in

Solution:

1. Combine all evaluations to a single evaluation of the input
Vin(') through a random linear combination. [Zhang20)]

2. Run the sumcheck protocol, verifier reducing it to a single

evaluation of Vi, (+) .

Suppose the evaluations received from layer i are f/,-,in(zi,o) and
Viin(2i1), the verifier generates r;,r;1 € F for layer i and com-
bines all the evaluations through a random linear combination:

Z (ri,oVi,in(Zi,o) + ri,1‘7i,in(2i,1))

=Z(ri,0 Z Ci(zi0,2)Vin(2) + i1 Z Ci(zi,l;z)f/in(z))

z€{0,1}5in z€{0,1}%in

= Zze{o,l}sin Vin(2) (Z (ri0Ci(zi0.2) + ri,lci(Zi,l,Z))) (14)

where C;(z;, z) is defined as:

1, if the z;-th value in V;, is the z-th value in Vj,

0, otherwise

Ci(Zi, Z) = {

Generalization of GKR for CNN

Convolutional layer

Motivation:
* Have an efficient protocol to verify the

result of the 2-D convolution between one
input and one kernel.

* In practice, there are multiple channels and

kernels in each convolution layer.

Improvement:

* Instead of repeating multiple times, it represents
the computation of an entire convolutional layer.
* It utilizes the linearity of FET.
* Original: chyy * chyye FFTs and IFFTs with
prover time of O(chiy, * Chyy + 1)
* Improvements: reduce to Chyye IFFTSs with
prover time of O(chgyy; + N%)

one input and one kernel

U =X« W = IFFT(FFT(X) © FFT(W)) (12)

multiple channels and kernels

product. Recall that the input data to a convolutional layer is X €
FehinXnXn and the kernel is W € FhourXchinXWXW Here with omit
the subscript of layer i for the ease of notations. The convolutional
layer computes U € FehourX(n=w+1)x(n-w+1) where for each 0 <
T <choyut, 0 < j,k<n—w+1,

hin=1 5 (w1, (w=1)
Ulz, j, k] = ZC Zt”:)low [0,j,k] - W[z, 0,8,1]

hip—1 n-1-j k_ _
ZC Z T Xy =1 - jn—k—i] - Weolil.

algorithm. Let U; be the vector defined by the 7-th channel of the
output U, as we show in Section 3.2, we have

—~ Chin—l — -
Ur = Z Xo * WT,O’

o=0

- Zd”'"_l IFFT(FFT(X,) © FFT(Wy5)) (15)

hin=1 _
— IFFT (Z;O FFT(X,) © FFT(Wyo) | .

