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Outline
• Sumcheck for FFT

• 2-D conv. using FFT
• Preliminary about FFT
• Achieve linear prover

• Generate sumcheck messages in linear time (with initialization)
• [This] Initialize !𝐹(𝑢, 𝑥) for all 𝑥 ∈ 0,1 !"# $ in linear time (𝑢 ∈ 𝔽!"#% is fixed )

• Achieve logarithmic verifier
• [This] Delegate the the computation for !𝐹(𝑢, 𝑣) to prover

• Generalization of  GKR for CNN
• Generalized addition and multiplication gates with fan-in ≥ 2
• Taking inputs from either the layer above or from the input gate.
• Reduce the number of  IFTTs in the entire convolutional layer



2-D Convolution using FFT
2-D Conv à 1-D Conv

2-D conv

1-D conv



2-D Convolution using FFT
1-D Conv à poly multiplication (3 steps using FFT)

1. FFT: 2n2 points on polyX and polyW
2. element-wise product: 2n2 points on polyU

(point-value rep. of  polyU)
3. IFFT: coeff. rep. of  polyU 

(U = first n2 coeff. of  polyU)

https://www.cs.princeton.edu/courses/archive/spr05/cos423/lectures/05fft.pdf



Sumcheck for FFT
FFT & IFFT

IFFTFFT
Divide-and-conqure



Sumcheck for FFT
Notations

𝑎 = 𝐹 $ 𝑐

Multilinear Extension



Sumcheck for FFT
Apply sumcheck to (𝒍𝒐𝒈𝑵)-variate poly 𝒈 𝒙 = '𝒄 𝒙 )𝑭(𝒖, 𝒙)

Claim: &𝑎 𝑢 = ∑!∈ #,% !"#$ 𝑐̃(𝑥) -𝐹(𝑢, 𝑥) for a random fixed point 𝑢 ∈ 𝔽&'( )

𝑔* 𝑋 = ∑!%&'∈ ),' …∑!+,- $∈ ),' 	 𝑐̃ 𝑟%, … , 𝑟*+%, 𝑋, 𝑥*,%, … , 𝑥&'( - $
-𝐹(𝑢, 𝑟%, … , 𝑟*+%, 𝑋, 𝑥*,%, … , 𝑥&'( -) 

In round k:
• Prover sends the degree-2 univariate polynomial 𝑔*(𝑋), which 

can be specifiied by 3 points 𝑔* 0 , 𝑔* 1 , 𝑔*(2)

• Prover is required to evaluate 𝑐̃ and -𝐹 at all points of  the form

     where 𝑥*,%, … , 𝑥&'( - ∈ 0,1 &'( -+* 

𝑐̃ 𝑟%, … , 𝑟*+%, 0,1,2 , 𝑥*,%, … , 𝑥&'( -  

-𝐹 𝑢, 𝑟%, … , 𝑟*+%, 0,1,2 , 𝑥*,%, … , 𝑥&'( -  

In the last round:
• Verifier is required to evaluate random points -𝐹 𝑢, 𝑣 , 𝑐̃(𝑣)



Sumcheck for FFT
Generate sumcheck messages

1. Initialize the values of  𝑐̃ 𝑥 , '𝐹 𝑢, 𝑥 on all 𝑥 ∈ 0,1 :;< = (𝑢 ∈ 𝔽!"#% is fixed) 
• Naive approach requires 𝑂(𝑀𝑁) to compute )𝐹 𝑢, 𝑥
• This work computes )𝐹 𝑢, 𝑥 in 𝑂(𝑀 + 𝑁)

2. Generate all sumcheck messages in 𝛰(𝑁)

Goal: evaluate points 𝑐̃ 𝑟%, … , 𝑟*+%, 0,1,2 , 𝑥*,%, … , 𝑥&'( - , -𝐹 𝑢, 𝑟%, … , 𝑟*+%, 0,1,2 , 𝑥*,%, … , 𝑥&'( -  for 𝑘 = 1,… , log𝑁

Outline:
• With initializations, how to generate all sumcheck messages in 𝑂 𝑁  ? / The naive approach to compute -𝐹 𝑢, 𝑥  in 𝑂(𝑀𝑁) 
• How to initialize -𝐹 𝑢, 𝑥  in 𝑂(𝑀 + 𝑁) ? 



Sumcheck for FFT
Generate sumcheck messages in 𝛰(2ℓ) with 𝛰 2ℓ -order initialization
Goal: 
For simplicity, we denote the ℓ-degree multilinear poly. over 𝔽ℓ by ℎ 𝑥 .

1. Initialize: All evaluations of  ℎ 𝑥  for 𝑥 ∈ 0,1 ℓ can be computed in 𝑂 2ℓ
2. Compute 𝑟%, … , 𝑟*+%, 0,1,2 , 𝑏*,%, … , 𝑏ℓ */%,…,ℓ;2%&',…,2ℓ∈{#,%}  

Lemma: Each point can be evaluated in 𝑂 2ℓ . 
Method 1: compute each point one by one with total runtime 𝑂(25ℓ).

Method 2: reduce time to 𝑂(2ℓ) per round with total runtime 𝑂(ℓ2ℓ) over ℓ rounds.  

# = 3 $ 2ℓ points

-ℎ 𝑧 =L
!∈ #,% ℓ

M
6/#

ℓ
( 1 − 𝑧6 1 − 𝑥6 + 𝑧6𝑥6) $ ℎ(𝑥)

Key Fact: 
The points evaluated in round 𝑘 is highly structured that the tailing coordinates are all Boolean. 
For any input 𝑧 of  the form 𝑟%, … , 𝑟*+%, 0,1,2 , 𝑏*,%, … , 𝑏ℓ :

= 0 for all 𝑥*,%, … , 𝑥ℓ ≠ (𝑏*,%, … , 𝑏ℓ) 

Consider all evaluations of  ℎ 𝑥  for 𝑥 ∈ 0,1 ℓ as a 
list ℎ of  size 2ℓ.
It enables P to evaluate -ℎ 𝑧  in round k at all points 
with a single pass over ℎ.



Sumcheck for FFT
Generate sumcheck messages in 𝛰(2ℓ) with 𝛰 2ℓ -order initialization

Method 2: reduce time to 𝑂(2ℓ) per round with total runtime 𝑂(ℓ2ℓ) over ℓ rounds.  

-ℎ 𝑧 =L
!∈ #,% ℓ

M
6/#

ℓ
( 1 − 𝑧6 1 − 𝑥6 + 𝑧6𝑥6) $ ℎ(𝑥)

Key Fact: 
The points evaluated in round 𝑘 are highly structured where the tailing coordinates are all Boolean. 
For any input 𝑧 of  the form 𝑟%, … , 𝑟*+%, 0,1,2 , 𝑏*,%, … , 𝑏ℓ :

= 0 for all 𝑥*,%, … , 𝑥ℓ ≠ (𝑏*,%, … , 𝑏ℓ) 

• Consider all evaluations of  ℎ 𝑥  for 𝑥 ∈ 0,1 ℓ as a table 𝒉 of  size 2ℓ.
• Each entry of  ℎ contributes to -ℎ 𝑟%, … , 𝑟*+%, 0,1,2 , 𝑏*,%, … , 𝑏ℓ  for only one tuple 𝑏*,%, … , 𝑏ℓ .
• It enables P to evaluate -ℎ 𝑧  in round k at all points with a single pass over ℎ.

Method 3: have prover reuse work across rounds reducing time to 𝑂(2ℓ/2*) in round 𝑘 with	𝑂(2ℓ) total runtime.
Informal Fact: 
Two entries 𝑖, 𝑗 agree in their last 𝑠 bits, then ℎ6 , ℎ7 contribute to the same three points in each of  the final 𝑠 rounds.



Sumcheck for FFT
Generate sumcheck messages in 𝛰(2ℓ) with 𝛰 2ℓ -order initialization

Method 3: have prover reuse work across rounds reducing time to 𝑂(2ℓ/2*) in round 𝑘 with	𝑂(2ℓ) total runtime.
Informal Fact: 
Two indices 𝑖, 𝑗 agree in their last 𝑠 bits, then ℎ6 , ℎ7 contribute to the same three points in each of  the final 𝑠 rounds.



Sumcheck for FFT
Generate sumcheck messages in 𝛰(2ℓ) with 𝛰 2ℓ -order initialization

Method 3: have prover reuse work across rounds reducing time to 𝑂(2ℓ/2*) in round 𝑘 with	𝑂(2ℓ) total runtime.
Informal Fact: 
Two indices 𝑖, 𝑗 agree in their last 𝑠 bits, then ℎ6 , ℎ7 contribute to the same three points in each of  the final 𝑠 rounds.

Proof:

given:

Proof:



Sumcheck for FFT
Back to our goal:

Next task: Initialize )𝐹(𝑢, 𝑥) for all 𝑥 ∈ 0,1 ℓ 



Sumcheck for FFT
Initialize 1𝐹(𝑢, 𝑥) for all 𝑥 ∈ 0,1 123 4 :

Let 𝑠8/9/ denote 
logM=2; z = 00, 01, 10, 11; u=u0u_1
 (1) = 𝑠8)9)𝑠8'9) + 𝑠8)9)𝑠8'9' + 𝑠8)9'𝑠8'9) + 𝑠8)9'𝑠8'9'
(2) = 𝑠8)9) + 𝑠8)9' 𝑠8'9) + 𝑠8'9'



Sumcheck for FFT
Initialize 1𝐹(𝑢, 𝑥) for all 𝑥 ∈ 0,1 123 4 :

Key Idea: have prover reuse work across rounds reducing time to 𝑂(𝑀/26) in round log𝑀 − 𝑖.

Compute in log𝑀 rounds with total runtime 𝑂(𝑀 + 𝑁):
1. Prover precomputes all 𝑀 distinct values of  𝜔5/&'

7  for 0 ≤ 𝑖 < log𝑀 − 1,0 ≤ 𝑗 < min( 26,%, 𝑁) in 𝑂(𝑀)
2. Prover in round 𝑖 calculates 26,% different values of  ( 1 − 𝑢6 + 𝑢6 $ 𝜔5/&'

7 ) and multiplies them to 26 distinct 
running products in round 𝑖 − 1.

3. In the last round, prover outputs 𝑁 values of  -𝐹(𝑢, 𝑥) for all 𝑥 ∈ 0,1 &'( -. 𝑂(𝑁)



Sumcheck for FFT
Initialize 1𝐹(𝑢, 𝑥) for all 𝑥 ∈ 0,1 123 4 :

log𝑀 − 1
min( 26,%, 𝑁) − 1 

reverse order



Sumcheck for FFT
Apply sumcheck to (𝒍𝒐𝒈𝑵)-variate poly 𝒈 𝒙 = '𝒄 𝒙 )𝑭(𝒖, 𝒙)

Claim: &𝑎 𝑢 = ∑!∈ #,% !"#$ 𝑐̃(𝑥) -𝐹(𝑢, 𝑥) for a random fixed point 𝑢 ∈ 𝔽&'( )

-𝐹 𝑢, 𝑟%, … , 𝑟*+%, 0,1,2 , 𝑥*,%, … , 𝑥&'( -  

𝑔* 𝑋 = ∑!%&'∈ ),' …∑!+,- $∈ ),' 	 𝑐̃ 𝑟%, … , 𝑟*+%, 𝑋, 𝑥*,%, … , 𝑥&'( - $
-𝐹(𝑢, 𝑟%, … , 𝑟*+%, 𝑋, 𝑥*,%, … , 𝑥&'( -) 

In round k:
• Prover sends the degree-2 univariate polynomial 𝑔*(𝑋), which 

can be specifiied by 3 points 𝑔* 0 , 𝑔* 1 , 𝑔*(2)

• Prover is required to evaluate 𝑐̃ and -𝐹 at all points of  the form

     where 𝑥*,%, … , 𝑥&'( - ∈ 0,1 &'( -+* 

𝑐̃ 𝑟%, … , 𝑟*+%, 0,1,2 , 𝑥*,%, … , 𝑥&'( -  

In the last round:
• Verifier is required to evaluate random points -𝐹 𝑢, 𝑣 , 𝑐̃(𝑣)

Summary:
• Prover time: 𝑂(𝑀 + 𝑁) 
• Proof  size: 𝑂 log𝑁
• Verifier time: 𝑂(log𝑁)

given oracle access of  𝑐̃ $ -𝐹($) 

Question: does it require to commit to !𝐹(𝑢,&) rather than !𝐹(&)? 



Sumcheck for FFT
Delegate the computation for 1𝐹(𝑢, 𝑣) to prover

Key idea: follow alg2 through a sequence of  sumcheck protocols.

MLE:



Sumcheck for FFT
Delegate the computation for 1𝐹(𝑢, 𝑣) to prover

Key idea: follow alg2 through a sequence of  sumcheck protocols.

MLE:

Recursive protocol 
• Start: claim -𝐹 𝑢, 𝑣 = [𝐴:

&'( -+% (𝑣)
•  For 𝑖 = log𝑁 − 1,… , 0

• Reduce its correctness to the evaluation of  [𝐴:
(6)($) 

at a random point through a sumcheck protocol.
• At the end of  each sumcheck, verifier has to 

evaluate -𝛽($) and ( 1 − 𝑢6 + 𝑢6𝜔̂6,%($) at a 
random point.

• In the last round: [𝐴:
# $ = 1

Round i:
• Prover time: 𝑂(26) using alg1
• Proof  size: 𝑂 𝑖
• Verifier time: 𝑂(𝑖)

• -𝛽 $ = ∏6/#
6+%… costs 𝑂(𝑖)

• 𝜔̂6,% 𝑟 = 𝑂(𝑖)



Sumcheck for FFT
Delegate the computation for 1𝐹(𝑢, 𝑣) to prover

Key idea: follow alg2 through a sequence of  sumcheck protocols.
Recursive protocol 
• Start: claim -𝐹 𝑢, 𝑣 = [𝐴:

&'( -+% (𝑣)
•  For 𝑖 = log𝑁 − 1,… , 0

• Reduce its correctness to the evaluation of  [𝐴:
(6)($) 

at a random point through a sumcheck protocol.
• At the end of  each sumcheck, verifier has to 

evaluate -𝛽($) and ( 1 − 𝑢6 + 𝑢6𝜔̂6,%($) at a 
random point.

• In the last round: [𝐴:
# $ = 1

Round i:
• Prover time: 𝑂(26) using alg1
• Proof  size: 𝑂 𝑖
• Verifier time: 𝑂(𝑖)

• -𝛽 $ = ∏6/#
6+%… costs 𝑂(𝑖)

• 𝜔̂6,% 𝑟 = 𝑂(𝑖)

𝜔̂6,% 𝑟 =	

=

Summary: log𝑁  rounds
• Prover time: 𝑂 𝑁 = 𝑂(∑6/%

&'( - 26)
• Proof  size: 𝑂 log5𝑁 = 𝑂(∑6/%

&'( - 𝑖)
• Verifier time: 𝑂 log5𝑁 = 𝑂(∑6/%

&'( - 𝑖)



Generalization of  GKR for CNN
Generalized addition and multiplication gates
Original GKR: 
• Designed for a layered arithmetic circuit of  size S, depth 

d and fan-in two.

Issue:
• It takes logn layers to sum n values.
• [Thaler13] partially address it by observing the addition 

tree can be represented as a single sumcheck.
• [This] consider the a more general case. 

Generalized GKR: with fan-in ≥ 𝟐 



Generalization of  GKR for CNN
Taking inputs from arbitrary layers
Motivation:
• CNN consists of  multiple conv. layers and fully-connected 

layers but the kernels and weight-matrices of  these layers 
are witness from the prover.

• [Zhang20] proposed a variant GKR protocol where a gate 
can take input from arbitrary layers instead of  only the 
previous layer.

Generalized GKR: 
A gate takes input from either the layer 
above or from the input gate.

Notations:



Generalization of  GKR for CNN
Taking inputs from arbitrary layers
Generalized GKR: 
A gate takes input from either the layer 
above or from the input gate.

Recursive protocol 
• Start: claim -𝑉# 𝑧
• For 𝑖 = 0, … , 𝑑

At the end of  each sumcheck protocol:
• Goal: Reduce its correctness to evaluation of  -𝑉6,% $  at 

a random point.
• But it is reduced to two evaluations of  -𝑉6,% $  and two 

evaluations of  -𝑉6,6= $  
• In the last round (reaching the input layer): verifier has 

received two evaluations about the input per layer.

Solution:
1. Combine all evaluations to a single evaluation of  the input 

-𝑉6= $  through a random linear combination. [Zhang20]
2. Run the sumcheck protocol, verifier reducing it to a single 

evaluation of  -𝑉6= $  .



Generalization of  GKR for CNN
Taking inputs from arbitrary layers
Generalized GKR: 
A gate takes input from either the layer 
above or from the input gate.

Solution:
1. Combine all evaluations to a single evaluation of  the input 

-𝑉6= $  through a random linear combination. [Zhang20]
2. Run the sumcheck protocol, verifier reducing it to a single 

evaluation of  -𝑉6= $  .



Generalization of  GKR for CNN
Convolutional layer
Motivation: 
• Have an efficient protocol to verify the 

result of  the 2-D convolution between one 
input and one kernel.

• In practice, there are multiple channels and 
kernels in each convolution layer.

Improvement:
• Instead of  repeating multiple times, it represents 

the computation of  an entire convolutional layer.
• It utilizes the linearity of  FFT.

• Original: 𝑐ℎ6= $ 𝑐ℎ>8? FFTs and IFFTs with 
prover time of  𝛰(𝑐ℎ6= $ 𝑐ℎ>8? $ 𝑛5) 

• Improvements: reduce to 𝑐ℎ>8? IFFTs with 
prover time of  𝛰(𝑐ℎ>8? $ 𝑛5)

one input and one kernel

multiple channels and kernels


