
zkCNN
2023.8

Outline
• Sumcheck for FFT

• 2-D conv. using FFT
• Preliminary about FFT
• Achieve linear prover

• Generate sumcheck messages in linear time (with initialization)
• [This] Initialize !𝐹(𝑢, 𝑥) for all 𝑥 ∈ 0,1 !"# $ in linear time (𝑢 ∈ 𝔽!"#% is fixed)

• Achieve logarithmic verifier
• [This] Delegate the the computation for !𝐹(𝑢, 𝑣) to prover

• Generalization of GKR for CNN
• Generalized addition and multiplication gates with fan-in ≥ 2
• Taking inputs from either the layer above or from the input gate.
• Reduce the number of IFTTs in the entire convolutional layer

2-D Convolution using FFT
2-D Conv à 1-D Conv

2-D conv

1-D conv

2-D Convolution using FFT
1-D Conv à poly multiplication (3 steps using FFT)

1. FFT: 2n2 points on polyX and polyW
2. element-wise product: 2n2 points on polyU

(point-value rep. of polyU)
3. IFFT: coeff. rep. of polyU

(U = first n2 coeff. of polyU)

https://www.cs.princeton.edu/courses/archive/spr05/cos423/lectures/05fft.pdf

Sumcheck for FFT
FFT & IFFT

IFFTFFT
Divide-and-conqure

Sumcheck for FFT
Notations

𝑎 = 𝐹 $ 𝑐

Multilinear Extension

Sumcheck for FFT
Apply sumcheck to (𝒍𝒐𝒈𝑵)-variate poly 𝒈 𝒙 = '𝒄 𝒙)𝑭(𝒖, 𝒙)

Claim: &𝑎 𝑢 = ∑!∈ #,% !"#$ 𝑐̃(𝑥) -𝐹(𝑢, 𝑥) for a random fixed point 𝑢 ∈ 𝔽&'()

𝑔* 𝑋 = ∑!%&'∈),' …∑!+,- $∈),' 	 𝑐̃ 𝑟%, … , 𝑟*+%, 𝑋, 𝑥*,%, … , 𝑥&'(- $
-𝐹(𝑢, 𝑟%, … , 𝑟*+%, 𝑋, 𝑥*,%, … , 𝑥&'(-)

In round k:
• Prover sends the degree-2 univariate polynomial 𝑔*(𝑋), which

can be specifiied by 3 points 𝑔* 0 , 𝑔* 1 , 𝑔*(2)

• Prover is required to evaluate 𝑐̃ and -𝐹 at all points of the form

 where 𝑥*,%, … , 𝑥&'(- ∈ 0,1 &'(-+*

𝑐̃ 𝑟%, … , 𝑟*+%, 0,1,2 , 𝑥*,%, … , 𝑥&'(-

-𝐹 𝑢, 𝑟%, … , 𝑟*+%, 0,1,2 , 𝑥*,%, … , 𝑥&'(-

In the last round:
• Verifier is required to evaluate random points -𝐹 𝑢, 𝑣 , 𝑐̃(𝑣)

Sumcheck for FFT
Generate sumcheck messages

1. Initialize the values of 𝑐̃ 𝑥 , '𝐹 𝑢, 𝑥 on all 𝑥 ∈ 0,1 :;< = (𝑢 ∈ 𝔽!"#% is fixed)
• Naive approach requires 𝑂(𝑀𝑁) to compute)𝐹 𝑢, 𝑥
• This work computes)𝐹 𝑢, 𝑥 in 𝑂(𝑀 + 𝑁)

2. Generate all sumcheck messages in 𝛰(𝑁)

Goal: evaluate points 𝑐̃ 𝑟%, … , 𝑟*+%, 0,1,2 , 𝑥*,%, … , 𝑥&'(- , -𝐹 𝑢, 𝑟%, … , 𝑟*+%, 0,1,2 , 𝑥*,%, … , 𝑥&'(- for 𝑘 = 1,… , log𝑁

Outline:
• With initializations, how to generate all sumcheck messages in 𝑂 𝑁 ? / The naive approach to compute -𝐹 𝑢, 𝑥 in 𝑂(𝑀𝑁)
• How to initialize -𝐹 𝑢, 𝑥 in 𝑂(𝑀 + 𝑁) ?

Sumcheck for FFT
Generate sumcheck messages in 𝛰(2ℓ) with 𝛰 2ℓ -order initialization
Goal:
For simplicity, we denote the ℓ-degree multilinear poly. over 𝔽ℓ by ℎ 𝑥 .

1. Initialize: All evaluations of ℎ 𝑥 for 𝑥 ∈ 0,1 ℓ can be computed in 𝑂 2ℓ
2. Compute 𝑟%, … , 𝑟*+%, 0,1,2 , 𝑏*,%, … , 𝑏ℓ */%,…,ℓ;2%&',…,2ℓ∈{#,%}

Lemma: Each point can be evaluated in 𝑂 2ℓ .
Method 1: compute each point one by one with total runtime 𝑂(25ℓ).

Method 2: reduce time to 𝑂(2ℓ) per round with total runtime 𝑂(ℓ2ℓ) over ℓ rounds.

= 3 $ 2ℓ points

-ℎ 𝑧 =L
!∈ #,% ℓ

M
6/#

ℓ
(1 − 𝑧6 1 − 𝑥6 + 𝑧6𝑥6) $ ℎ(𝑥)

Key Fact:
The points evaluated in round 𝑘 is highly structured that the tailing coordinates are all Boolean.
For any input 𝑧 of the form 𝑟%, … , 𝑟*+%, 0,1,2 , 𝑏*,%, … , 𝑏ℓ :

= 0 for all 𝑥*,%, … , 𝑥ℓ ≠ (𝑏*,%, … , 𝑏ℓ)

Consider all evaluations of ℎ 𝑥 for 𝑥 ∈ 0,1 ℓ as a
list ℎ of size 2ℓ.
It enables P to evaluate -ℎ 𝑧 in round k at all points
with a single pass over ℎ.

Sumcheck for FFT
Generate sumcheck messages in 𝛰(2ℓ) with 𝛰 2ℓ -order initialization

Method 2: reduce time to 𝑂(2ℓ) per round with total runtime 𝑂(ℓ2ℓ) over ℓ rounds.

-ℎ 𝑧 =L
!∈ #,% ℓ

M
6/#

ℓ
(1 − 𝑧6 1 − 𝑥6 + 𝑧6𝑥6) $ ℎ(𝑥)

Key Fact:
The points evaluated in round 𝑘 are highly structured where the tailing coordinates are all Boolean.
For any input 𝑧 of the form 𝑟%, … , 𝑟*+%, 0,1,2 , 𝑏*,%, … , 𝑏ℓ :

= 0 for all 𝑥*,%, … , 𝑥ℓ ≠ (𝑏*,%, … , 𝑏ℓ)

• Consider all evaluations of ℎ 𝑥 for 𝑥 ∈ 0,1 ℓ as a table 𝒉 of size 2ℓ.
• Each entry of ℎ contributes to -ℎ 𝑟%, … , 𝑟*+%, 0,1,2 , 𝑏*,%, … , 𝑏ℓ for only one tuple 𝑏*,%, … , 𝑏ℓ .
• It enables P to evaluate -ℎ 𝑧 in round k at all points with a single pass over ℎ.

Method 3: have prover reuse work across rounds reducing time to 𝑂(2ℓ/2*) in round 𝑘 with	𝑂(2ℓ) total runtime.
Informal Fact:
Two entries 𝑖, 𝑗 agree in their last 𝑠 bits, then ℎ6 , ℎ7 contribute to the same three points in each of the final 𝑠 rounds.

Sumcheck for FFT
Generate sumcheck messages in 𝛰(2ℓ) with 𝛰 2ℓ -order initialization

Method 3: have prover reuse work across rounds reducing time to 𝑂(2ℓ/2*) in round 𝑘 with	𝑂(2ℓ) total runtime.
Informal Fact:
Two indices 𝑖, 𝑗 agree in their last 𝑠 bits, then ℎ6 , ℎ7 contribute to the same three points in each of the final 𝑠 rounds.

Sumcheck for FFT
Generate sumcheck messages in 𝛰(2ℓ) with 𝛰 2ℓ -order initialization

Method 3: have prover reuse work across rounds reducing time to 𝑂(2ℓ/2*) in round 𝑘 with	𝑂(2ℓ) total runtime.
Informal Fact:
Two indices 𝑖, 𝑗 agree in their last 𝑠 bits, then ℎ6 , ℎ7 contribute to the same three points in each of the final 𝑠 rounds.

Proof:

given:

Proof:

Sumcheck for FFT
Back to our goal:

Next task: Initialize)𝐹(𝑢, 𝑥) for all 𝑥 ∈ 0,1 ℓ

Sumcheck for FFT
Initialize 1𝐹(𝑢, 𝑥) for all 𝑥 ∈ 0,1 123 4 :

Let 𝑠8/9/ denote
logM=2; z = 00, 01, 10, 11; u=u0u_1
 (1) = 𝑠8)9)𝑠8'9) + 𝑠8)9)𝑠8'9' + 𝑠8)9'𝑠8'9) + 𝑠8)9'𝑠8'9'
(2) = 𝑠8)9) + 𝑠8)9' 𝑠8'9) + 𝑠8'9'

Sumcheck for FFT
Initialize 1𝐹(𝑢, 𝑥) for all 𝑥 ∈ 0,1 123 4 :

Key Idea: have prover reuse work across rounds reducing time to 𝑂(𝑀/26) in round log𝑀 − 𝑖.

Compute in log𝑀 rounds with total runtime 𝑂(𝑀 + 𝑁):
1. Prover precomputes all 𝑀 distinct values of 𝜔5/&'

7 for 0 ≤ 𝑖 < log𝑀 − 1,0 ≤ 𝑗 < min(26,%, 𝑁) in 𝑂(𝑀)
2. Prover in round 𝑖 calculates 26,% different values of (1 − 𝑢6 + 𝑢6 $ 𝜔5/&'

7) and multiplies them to 26 distinct
running products in round 𝑖 − 1.

3. In the last round, prover outputs 𝑁 values of -𝐹(𝑢, 𝑥) for all 𝑥 ∈ 0,1 &'(-. 𝑂(𝑁)

Sumcheck for FFT
Initialize 1𝐹(𝑢, 𝑥) for all 𝑥 ∈ 0,1 123 4 :

log𝑀 − 1
min(26,%, 𝑁) − 1

reverse order

Sumcheck for FFT
Apply sumcheck to (𝒍𝒐𝒈𝑵)-variate poly 𝒈 𝒙 = '𝒄 𝒙)𝑭(𝒖, 𝒙)

Claim: &𝑎 𝑢 = ∑!∈ #,% !"#$ 𝑐̃(𝑥) -𝐹(𝑢, 𝑥) for a random fixed point 𝑢 ∈ 𝔽&'()

-𝐹 𝑢, 𝑟%, … , 𝑟*+%, 0,1,2 , 𝑥*,%, … , 𝑥&'(-

𝑔* 𝑋 = ∑!%&'∈),' …∑!+,- $∈),' 	 𝑐̃ 𝑟%, … , 𝑟*+%, 𝑋, 𝑥*,%, … , 𝑥&'(- $
-𝐹(𝑢, 𝑟%, … , 𝑟*+%, 𝑋, 𝑥*,%, … , 𝑥&'(-)

In round k:
• Prover sends the degree-2 univariate polynomial 𝑔*(𝑋), which

can be specifiied by 3 points 𝑔* 0 , 𝑔* 1 , 𝑔*(2)

• Prover is required to evaluate 𝑐̃ and -𝐹 at all points of the form

 where 𝑥*,%, … , 𝑥&'(- ∈ 0,1 &'(-+*

𝑐̃ 𝑟%, … , 𝑟*+%, 0,1,2 , 𝑥*,%, … , 𝑥&'(-

In the last round:
• Verifier is required to evaluate random points -𝐹 𝑢, 𝑣 , 𝑐̃(𝑣)

Summary:
• Prover time: 𝑂(𝑀 + 𝑁)
• Proof size: 𝑂 log𝑁
• Verifier time: 𝑂(log𝑁)

given oracle access of 𝑐̃ $ -𝐹($)

Question: does it require to commit to !𝐹(𝑢,&) rather than !𝐹(&)?

Sumcheck for FFT
Delegate the computation for 1𝐹(𝑢, 𝑣) to prover

Key idea: follow alg2 through a sequence of sumcheck protocols.

MLE:

Sumcheck for FFT
Delegate the computation for 1𝐹(𝑢, 𝑣) to prover

Key idea: follow alg2 through a sequence of sumcheck protocols.

MLE:

Recursive protocol
• Start: claim -𝐹 𝑢, 𝑣 = [𝐴:

&'(-+% (𝑣)
• For 𝑖 = log𝑁 − 1,… , 0

• Reduce its correctness to the evaluation of [𝐴:
(6)($)

at a random point through a sumcheck protocol.
• At the end of each sumcheck, verifier has to

evaluate -𝛽($) and (1 − 𝑢6 + 𝑢6𝜔̂6,%($) at a
random point.

• In the last round: [𝐴:
$ = 1

Round i:
• Prover time: 𝑂(26) using alg1
• Proof size: 𝑂 𝑖
• Verifier time: 𝑂(𝑖)

• -𝛽 $ = ∏6/#
6+%… costs 𝑂(𝑖)

• 𝜔̂6,% 𝑟 = 𝑂(𝑖)

Sumcheck for FFT
Delegate the computation for 1𝐹(𝑢, 𝑣) to prover

Key idea: follow alg2 through a sequence of sumcheck protocols.
Recursive protocol
• Start: claim -𝐹 𝑢, 𝑣 = [𝐴:

&'(-+% (𝑣)
• For 𝑖 = log𝑁 − 1,… , 0

• Reduce its correctness to the evaluation of [𝐴:
(6)($)

at a random point through a sumcheck protocol.
• At the end of each sumcheck, verifier has to

evaluate -𝛽($) and (1 − 𝑢6 + 𝑢6𝜔̂6,%($) at a
random point.

• In the last round: [𝐴:
$ = 1

Round i:
• Prover time: 𝑂(26) using alg1
• Proof size: 𝑂 𝑖
• Verifier time: 𝑂(𝑖)

• -𝛽 $ = ∏6/#
6+%… costs 𝑂(𝑖)

• 𝜔̂6,% 𝑟 = 𝑂(𝑖)

𝜔̂6,% 𝑟 =	

=

Summary: log𝑁 rounds
• Prover time: 𝑂 𝑁 = 𝑂(∑6/%

&'(- 26)
• Proof size: 𝑂 log5𝑁 = 𝑂(∑6/%

&'(- 𝑖)
• Verifier time: 𝑂 log5𝑁 = 𝑂(∑6/%

&'(- 𝑖)

Generalization of GKR for CNN
Generalized addition and multiplication gates
Original GKR:
• Designed for a layered arithmetic circuit of size S, depth

d and fan-in two.

Issue:
• It takes logn layers to sum n values.
• [Thaler13] partially address it by observing the addition

tree can be represented as a single sumcheck.
• [This] consider the a more general case.

Generalized GKR: with fan-in ≥ 𝟐

Generalization of GKR for CNN
Taking inputs from arbitrary layers
Motivation:
• CNN consists of multiple conv. layers and fully-connected

layers but the kernels and weight-matrices of these layers
are witness from the prover.

• [Zhang20] proposed a variant GKR protocol where a gate
can take input from arbitrary layers instead of only the
previous layer.

Generalized GKR:
A gate takes input from either the layer
above or from the input gate.

Notations:

Generalization of GKR for CNN
Taking inputs from arbitrary layers
Generalized GKR:
A gate takes input from either the layer
above or from the input gate.

Recursive protocol
• Start: claim -𝑉# 𝑧
• For 𝑖 = 0, … , 𝑑

At the end of each sumcheck protocol:
• Goal: Reduce its correctness to evaluation of -𝑉6,% $ at

a random point.
• But it is reduced to two evaluations of -𝑉6,% $ and two

evaluations of -𝑉6,6= $
• In the last round (reaching the input layer): verifier has

received two evaluations about the input per layer.

Solution:
1. Combine all evaluations to a single evaluation of the input

-𝑉6= $ through a random linear combination. [Zhang20]
2. Run the sumcheck protocol, verifier reducing it to a single

evaluation of -𝑉6= $.

Generalization of GKR for CNN
Taking inputs from arbitrary layers
Generalized GKR:
A gate takes input from either the layer
above or from the input gate.

Solution:
1. Combine all evaluations to a single evaluation of the input

-𝑉6= $ through a random linear combination. [Zhang20]
2. Run the sumcheck protocol, verifier reducing it to a single

evaluation of -𝑉6= $.

Generalization of GKR for CNN
Convolutional layer
Motivation:
• Have an efficient protocol to verify the

result of the 2-D convolution between one
input and one kernel.

• In practice, there are multiple channels and
kernels in each convolution layer.

Improvement:
• Instead of repeating multiple times, it represents

the computation of an entire convolutional layer.
• It utilizes the linearity of FFT.

• Original: 𝑐ℎ6= $ 𝑐ℎ>8? FFTs and IFFTs with
prover time of 𝛰(𝑐ℎ6= $ 𝑐ℎ>8? $ 𝑛5)

• Improvements: reduce to 𝑐ℎ>8? IFFTs with
prover time of 𝛰(𝑐ℎ>8? $ 𝑛5)

one input and one kernel

multiple channels and kernels

